

Overview of Direct Molecular Detection and Nanopore Sequencing (DDNS) of Poliovirus

Lecture and discussion

Poliovirus Direct Detection and Nanopore Sequencing (DDNS)

sample collection (stool)

- processing (chloroform)
- RNA extraction (manual, automated)

nested PCR (barcoded primers)

nanopore sequencing (pooled VP1 products)

analysis & reporting (PIRANHA)

VP1 sequences

Advantages of DDNS over cell-culture-ITD-Sanger sequencing

- Protocol detects and generates a VP1 sequence for poliovirus in stool samples 2-3 days after arrival in the laboratory
- Non-inferior sensitivity and specificity compared with cell-culture
- Accurate consensus sequences for every poliovirus detected
- Faster detection of outbreaks
- Cost-effective at ~\$15 per sample assuming >90 samples/week
- Ongoing training in GPLN labs to implement method and generate further data on performance and costs -> accepted/recommended by GPLN SWG

Example Piranha report

Piranha report 2022-12-08

a.	Sample 🍦	Barcode 🔺	Sample Classification \blacklozenge	Reference group	Number of mutations
	ENV001	barcode01	Sabin-like	Sabin3-related	1
	ENV001	barcode01	Sabin-ilke	Sabin2-related	2
	ENV002	barcode02	VDPV	Sabin2-related	12
	ENV003	barcode03	WPV1	WPV1	NA
	ENV004	barcode04	VDPV	Sabin2-related	10

Sample	🔷 Barcode 🔺	Sabin1-related	l 🔷 Sabin2-related 🔶	Sabin3-related	d 🜲 WPV1 🌲	WPV2	WPV3 🌲	NonPolioEV	unmapped
ENV001	barcode01	0	488	252	0	0	0	0	25
ENV002	barcode02	0	1100	0	0	1	0	35	12
ENV003	barcode03	0	0	0	339	0	0	0	0
ENV004	barcode04	0	0	0	138	0	0	0	0
negative	barcode05	0	0	0	0	0	0	1	10

Showing 5 of 96 entries

b.

C. Identical Sequences Sequence IDs

2	ENV022 barcode22 Sabin3-related 1 17:CT ENV024 barcode24 Sabin3-related 1 17:CT
1	ENV001[barcode01[babin2-related]2[161:C1;427:GA ENV030[barcode30]Sabin2-related 2[161:CT;427:GA

d. Pass Sample Barcode Sabin1-related Sabin2-related Sabin3-related WPV1 WPV2 WPV3 NonPolioEV unmapped

\checkmark	negative barcode05	0	0	0	0	0	0	1	10
	positive barcode05	0	0	0	0	0	0	45	0

http://polionanopore.org

• Protocols maintained on protocols.io – can be reached through

www.polionanopore.org

- Forums on the protocols.io site to raise any queries you have about the protocol
- New version of the protocols will be published here.

POLIOVIRUS SEQUENCING CONSORTIUM

Free, open source protocols and software for poliovirus detection and sequencing using nanopore.

You can find all you need here for direct detection and nanopore sequencing (DDNS) of poliovirus from stool and environmental samples. Helping you detect and respond to poliovirus outbreaks faster. Funded by the Bill and Melinda Gates Foundation.

QA/QC

- Careful QA/QC essential (clean PCR, data management)
- QC guidelines available and QA programme under development
- SOPs include recommended best practices for preventing and detecting crosscontamination, minimising sample handling
- Positive control (lyophilized CV-A20 standard prepared by NIBSC) and negative (water) control included in each sample batch from RNA extraction step
- Sequencing accuracy can be confirmed by testing reference panel and repeats/comparison with alternative sequencing platforms in a subset
- Long term monitoring of lab performance (including NPEV detection) and proficiency testing
- Accreditation of GPLN laboratories for DDNS will follow a similar process as for virus isolation, ITD, sequencing and environmental surveillance based on minimum requirements checklist

How this training is organised

- Scheduled presentations and guided lab work
- An overview of the method
- Guided use of the protocol by trainee lab teams
- Independent performance of the protocol by the lab teams with support
- Practice the use of Oxford nanopore MinKNOW sequencing software
- Practice the use of the graphical user interface for Piranha ('piranhaGUI')

Expected outcomes

- Be able to perform the DDNS protocol including RNA extraction, nested PCR, barcode file preparation, nanopore sequencing, report generation by PIRANHA
- Understand the QC/QA process
- Be ready to implement in your own laboratories with GPLN and PSC support
- Appreciate the other potential applications of poliovirus nanopore sequencing including generation of whole genomes

Post training expectations

- Trainees should identify any additional equipment their lab would require to perform DDNS
- Trainees should identify the areas in their lab where the steps of the DDNS protocol could be performed
- Trainers should explain the DDNS method to their other lab members
- Trainees should liaise with the WHO for procurement of required equipment and reagents for DDNS implementation in their lab
- Trainees should provide a point of contact for the PSC to provide additional reagents (e.g. the positive control virus)
- Further training should be arranged to support implementation of DDNS in their own laboratory

Acknowledgments

Study team

Imperial College London: Alex Shaw, Catherine Troman, Isobel Blake, Joyce Akello, Laura Cooper, Shannon Fitz, Nicholas Grassly

<u>NIBSC</u>: Manasi Majumdar, Erika Bujaki, Javier Martin

NIH Islamabad: Adnan Khurshid, Yasir Arshad, Masroor Alam

University of Edinburgh: Áine O'Toole, Rachel Colquhoun, Corey Ansley, Zoe Vallance, Andrew Rambaut

<u>INRB DRC</u>: Tresor Kabeya, Emmanuel Lokilo, Yogolelo Riziki, Amuri Aziza, Eddy Lusamaki, Jean-Claude Makangara, Marceline Alonga, Yvonne Lay, Bibiche Nsunda, Elisabeth Pukuta, Steve Ahuka, Jean-Jacques Muyembe, Placide Mbala <u>Biosurv International</u>: Catherine Pratt

Collaboration and funding

BMGF: Ananda Bandyopadhyay, Kathleen Rankin and colleagues

WHO HQ: Ousmane Diop, GPLN SWG, Surveillance Group

<u>WHO regional offices:</u> Salmaan Sharif (EMRO), Anfumbom Kitu Womeyi Kfutwah (Jude) (AFRO), Julius Chia (AFRO), Eugene Saxentoff (EURO)

2. Sequencing Run preparation, RNA extraction and RT-PCR, nested PCR, Library preparation and flow cell loading

0

Lecture and discussion

Planning a run

- The protocol requires 2 days once RNA is extracted
- Can process up to 96 samples (including negatives) by barcoding samples
- Negative and positive run controls should be included in every run
- Samples are pooled to allow simultaneous sequencing
- Samples currently only tested once, but contamination likely to be identified through identical sequences for non-vaccine strains.

Our PCR strategy

Pan-Enterovirus RT-PCR (primers for A+C enteroviruses, inc. nOPV2 : 5'NTR + Cre/nOPV-MM-R

- SuperScript III One-Step RT-PCR System

Library preparation overview

Run preparation

- All sample metadata can be entered into a csv file and each sample assigned a barcode.
- The analysis software (PIRANHA) will append the sequencing results to each sample.

	А	В	С	D	E
1	barcode	sample	EPID	institute	
2	barcode01	sample01	ARA-HIG-TOR-22-01		
3	barcode02	sample02	ARA-HIG-TOR-22-01		
4	barcode03	sample03	ARA-KAN-ERF-22-01		
5	barcode04	sample04	ARA-KAN-ERF-22-01		
6	barcode05	sample05	ARA-HIG-TOR-22-02		

The barcoded primers are stored in the format shown below, each number being a unique barcoded sequence attached to both Q8 and Y7

Run controls

- Both negative and positive controls go through the whole process from RNA extraction to sequencing
- Negative run control: Nuclease free water used for RNA extraction
- Positive run control: CVA20 formulated by NIBSC, distributed freeze-dried and known to amplify in both PCR steps
- Instructions for use of the positive control are provided with the vials
- The controls demonstrate if the required sensitivity and specificity of the method is achieved
- They confirm negative or positive signals and can indicate if any issues arise during processing steps

Performance of different RNA extraction kits

Approach

- 11 different RNA extraction methods have been compared
- Performance for nested VP1 PCR, pan-poliovirus qPCR (part of ITD) and near full-genome PCR assays examined
- We also considered processing time, flexibility, ease of use and cost

Conclusions

- There is significant variability between RNA extraction methods in their assay performance
- Optimal kits were:
 - manual: Roche HighPure, MagMAX Viral RNA
 - automated: Kingfisher MagMAX Viral RNA

RNA extraction

- Recommended kit: MagMAX Viral RNA Isolation kit Cat no: AM1939 Individual kit components are also available in large format.
- Magnetic bead-based method
- Can be performed manually in microcentrifuge tubes or in deep-well plates using KingFisher equipment

or

RNA extraction - MagMAX Viral RNA Isolation Kit

Setting up the panEV RT-PCR

	1 Reaction (μL)
2x Master Mix	12.5
SSIII Platinum Taq mix	1
Reverse Primer (10 mM, Cre/nOPV2-MM-R mix)	1
Nuclease free Water	4.5
Total	19

- 30 minutes of incubation at 50 °C (reverse transcription)
- Add 1 μ L of 10 μ M forward primer (5'NTR) for the PCR

panEV PCR

- Can run a gel to confirm, expect a band around 4kb.
- Only indicates the presence of an enterovirus.
- We do not run this gel routinely
- We do not exclude samples at this stage

Nested VP1 PCR

- Performed with Dreamtaq
- Uses 2 µl of each of the panEV reaction (no cleaning required)
- Primers Q8 and Y7 for poliovirus specific amplification of VP1
- Primers have a barcode to allow multiplexing of samples; each sample is assigned a barcode, which is the same in each of the primers.
- Barcoded Q8 and Y7 primers can be organised in a 96 well plate for ease of addition.
- Duration: 2 hrs for PCR

VP1 PCR primers

Flanking sequence

Y7 GGTGCTGACCGAGATCCTACGAATGGAGTGTTTAACCTGGGTTTGTGTCAGCCTGTAATGA

Barcode sequence

Primer sequence

TACACCTTRTCTCTGGAGAATCCAATTACCGAGATCCTACGAATGGAGTGTGTCGTGG Q8

Primer sequence

Barcode sequence

https://community.nanoporetech.com/technical_documents/chemistry-technical-document/v/chtd_500_v1_revt_07jul2016/barcoding-kits

Setting up the nested VP1 PCR

Add 2 µl

Add 2 μ l

	1 Reaction (μL)
Water	8.5
DreamTaq 2x master mix	12.5
Total volume	21

Q8/Y7 barcoded primer plate ($10\mu M$)

panEV reaction plate

(15)(23)(31)(39)(47)(55)(63)(71)(79)(87)(95)

н (8)(16)(24)(40)(48)(56)(64)(72)(80)(88)(96)

G

Post PCR

- poliovirus or enterovirus with similar primer binding sites
- We typically run a selection of samples to confirm PCR success

Library Pooling

- Barcoded samples equally pooled by volume (2µl each)
- Previously pooled equal ng of product, we have found for routine stool testing that it is easier to pool by volume without losing sensitivity

Why pool everything?

- Equal volume pooling removes quantification and dilution steps
 - Reduces cost
 - Reduces scope for error
 - Quicker
- Samples tend to have a fairly narrow range of concentrations after the nested PCR-generally 10-100 ng/ μl
- Do not need great sequencing depth with stool samples-likely low complexity
- Negative samples do not detract from the success of sequencing

Library cleaning and concentration

- Clean and concentrate the pool using 1:1 ratio of AmpureXP beads.
- In detail:
 - Add ampure beads to the pool which will bind the DNA and allow it to be separated by a magnet
 - Wash the pool with 80 % ethanol twice
 - Allow to briefly dry (bead pellet will become matt brown)
 - Resuspend pellet in 51 μl of water
 - Use magnet to pull the beads out of solution
 - Retain 50 μl of the eluate (the concentrated pool).

Ampure beads, Beckman Coulter

End preparation

- Treatment of DNA with Ultra II End-prep
- Ensures DNA has 3' dA tailed and 5' phosphorylated ends making them sticky for ligation of the sequencing adapter

Library preparation

- Performed using the Ligation Sequencing Kit from Oxford Nanopore
- Current version is LSK-114
- Contents:

There vials in the kit that we will not use in this protocol (these are crossed out to the right)

DCS : DNA Control Strand LA : Ligation Adapter LNB : Ligation Buffer LFB : Long Fragment Buffer SFB : Short Fragment Buffer AXP : AMPure XP Beads

- SB: Sequencing Buffer
- EB: Elution Buffer
- LIB : Library Beads
- LIS: Library Solution
- FCF: Flow Cell Flush
- FCT : Flow Cell Tether

Adaptation for Sequencing

• Ligate the Ligation Adapter (LA) which includes the motor protein

- The motor protein controls the speed at which the DNA passes through the pore
- Ligation performed with Quick T4 Ligase (supplied by NEB) and the LNB ligation buffer

Cleaning of Library

• Clean using Ampure beads

BUT

washing is performed with Short Fragment Buffer (SFB) and elution in elution buffer (EB)

- SFB used for washing where no size selection is required.
- Long fragment buffer (LFB) can be used to select for DNA >3kb

Priming of the flow cell

 Flowcell priming – Flow Cell Flush (FCF), Flow Cell Tether (FCT), and BSA

- The function of the tethers is to help pull DNA down towards the pores for sequencing
- The BSA (not included in the kit) is said to improve stability and throughput
- Added via the priming port in two steps
 - First time with sample port closed
 - Second time with sample port open

Loading the MinION

In this picture both the priming and sample loading ports are open.

Final Library

- The mix loaded onto the MinION contains:
 - Your adapted DNA library
 - Sequencing buffer (SB)
 - Library beads (LB)

• Loaded via the spot-on port, one drop at a time.

Loading the MinION

- Before flowcell priming/loading any small air bubbles are removed from beneath the priming port ()
- Waste reagents are removed from the waste port () with both priming port and sample port covers closed
- Video guide: See "Loading the MinION"

3. Nanopore sequencing

Lecture and discussion

PIRANHA (command line) or piranhaGUI (point and click)

Nanopore Sequencing

https://youtu.be/RcP85JHLmnl

MinION Sequencing

- Long Reads- potentially 100,000s of bp
- Fast- 1,000,000 reads per hour and can process in real time
- "Cheap" (depending on multiplexing)

but

• Error rate per base (~0.5% with current highest accuracy settings) - can still give accurate consensus sequences.

 Easy to use for setting up and running your sequencing run

Install following the instructions on the Nanopore website

• Basecalling and demultiplexing performed within MinKNOW

MinKNOW GUI

System messages

Sequencing overview

Running a flow cell check

Starting a sequencing run

Starting a sequencing run

Selecting the sequencing kit

Activities	0	MinKNOW 🔻			Wed 14:50 ●			🛎 🧃 😤 🕬 🗎 ▾
<u>}-</u>	MinKN	DW View			MINKNOW UI			
	ŧ	wpia-didelt376 My device						AS
	•	Start	<u>1. Positions</u>	<u>2. Kit</u>				
		Sequencing overview	Kit selection					
	~	Experiments	Sample type PCR-free	CR-free Vos	ng Control			Reset filters
.🝅		System messages						n n
	\$	Host settings	Ligation Sequencing Kit SQK-LSK109	Rapid Barcod SQK-RBK004	ing Kit	Rapid Sequencing Kit SQK-RAD004	Direct RNA Sequencing F SQK-RNA002	<it< th=""></it<>
1			PCR Barcoding Kit	16S Barcodin SQK-165024	g Kit (BC1-24)	CAS109 Sequencing Protocol SQK-CAS109	CAS109 Sequencing Kit SQK-CS9109	
-			Direct cDNA Sequencing Kit SQK-DCS109	Field Sequent SQK-LRK001	cing Kit	Ligation Sequencing Kit (48 reactions) SQK-LSK109-XL	Ligation Sequencing Kit SQK-LSK110	
?			Ligation Sequencing Kit XL Squencing Kit 24 Native Barcoding Sequencing Kit 24 SqK+L5K110-XL PCR cDNA Barcoding Sequencing Kit 96 SqK+NBD110-24 PCR cDNA Barcoding SqK+PCB109					ts
Q			PCR cDNA Barcoding Kit SQK-PCB110	Pore-C Sequencing Proto	ocol			
			PCR Sequencing Kit SQK-PSK004	SQK-RBK110 SQK-RBK110-90)-96	Direct RNA Sequencing Kit SQK-RNA003	Rapid PCR Barcoding Kit SQK-RPB004	
	SQK-ULK001 SQK-ULK001		VSK-PTC001 VSK-PTC001		VolTRAX Mutiplex Sequencing Kit VSK-VMK002	VSK-VMK003 VSK-VMK003		
			VoITRAX Sequencing Kit vsk-vskoo2	VSK-VSK003 VSK-VSK003		Direct cDNA Sequencing Kit SQK-DCS108	Ligation Sequencing Kit SQK-LSK108	
	٥	Application settings						
	×	Connection manager	Back to position selection					

For v14 chemistry and sequencing with the barcoded VP1 primers select SQK-LSK114

Selecting barcodes

Activit	es 🗘	MinKNOW 🔻	Wed 14:50 ●							
>_	MinKN	OW View								
	ŧ	wpia-didelt376 My device						AS		
	۰	Start	<u>1. Positions</u> 2		<u>3. Run options</u>	<u>4. Basecalling</u>	<u>5. Output</u>	<u>6. Review</u>		
		Sequencing overview	Kit selection							
	~	Experiments	Sample type PCR-free	Sample type PCR-free Multiplexing Control						
6	-	System messages	DNA RNA PCR PCR-fre	e Yes	N₀		1			
	۵	Host settings	Ligation Sequencing Kit SQK-LSK109	Rapid Barco SQK-RBK004	ding Kit	Rapid Sequencing Kit SQK-RAD004	Direct RNA Sequencing Kit SQK-RNA002			
u			PCR Barcoding Kit SQK-PBK004	16S Barcodi SQK-16S024	ng Kit (BC1-24)	CAS109 Sequencing Protocol SQK-CAS109	CAS109 Sequencing Kit SQK-CS9109			
•			Direct cDNA Sequencing Kit sQK-DCS109	Field Sequer SQK-LRK001	icing Kit	Ligation Sequencing Kit (48 reactions) SQK-LSK109-XL	Ligation Sequencing Kit	0		
?			Ligation Sequencing Kit XL SQK-LSK110-XL	Native Barco SQK-NBD110-:	oding Sequencing Kit 24	Native Barcoding Sequencing Kit 96 SQK-NBD110-96	PCR cDNA Barcoding Kits SQK-PCB109			
Ø			PCR cDNA Barcoding Kit SQK-PCB110	PCR-cDNA S SQK-PCS109	equencing Kit	PCR cDNA Sequencing Kit SQK-PCS110	Pore-C Sequencing Protocol SQK-PRC109			
2			Select expansion pack							
			Native Barcoding Expansion 1-12 (PCR-free) EXP-NBD104	Native Barc EXP-NBD114	oding Expansion 13-24 (PCR-free)	EXP-NBD196 EXP-NBD196	PCR Barcoding Expansion 1-1 EXP-PBC001	12		
			PCR Barcoding Expansion 1-96							
	۵	Application settings								
	¥	Connection manager	Back to position selection				Continue to run options > Skip	o to final review ≫		

For the barcoded VP1 primers select EXP-PBC096

(note- this step may not be available in the most recent software version, but can be performed in the analysis tab after the run)

Setting run length and voltage

Basecalling options

Output options

Activiti	es Ö	MinKNOW 🔻			Wed 14:50 ●			¥ 🔥 ኛ 🕪 🗎 ▾
>_	MinKN				MINKNOW UI			998
. 🚍	€ <u></u>	wpia-didelt376 My device						AS
	٥	Start	<u>1.Positions</u>	<u>2. Kit</u>	<u>3. Run options</u>	<u>4. Basecalling</u>	<u>5. Output</u>	<u>6. Review</u>
		Sequencing overview		C	utput			
	~	Experiments			Output location ⑦			
.🝅		System messages			/var/lib/MinKNOW/data/.			
Å	*	Host settings			Output format ()	вам		
•					Filtering ⑦			
-					Qscore: 8 Readlength: Unfiltered	⇔ Opti	ons	
?					> Show advanced user options			
Q,								
	۵	Application settings						
	×	Connection manager	Back to basecalling					Continue to final review 义

Select an analysis folder on your desktop for easy access

On a Linux computer the default is var/lib/minknow/data

Review the settings

Examples of a bad start

Rapid pore death may be caused by:

- Contamination
- Using an old flowcell
- Software fault

Examples of a bad start

Low pore occupancy may be caused by:

- Display channels proportionately Not loading enough sample onto the flowcell
 - Failed adaptation for sequencing

4. Post-sequencing run checks

Lecture and discussion

1. Confirm that your run created data

If there is no data, you can restart your run in MinKNOW.

If there is not enough data, you can click "join existing" when you start a run to ADD the data to your prior run

2. Check your run is complete in MinKNOW

MinKN	NKNOW UI									– o ×
÷Ξ	My device									
ø	Start	Expe	riments (13)	_					Search experiment	is Q
Ⅲ	Sequencing overview	Experin	iments active in the last 7 days.						et4 EAV17220	
~	// Experiments									
p er	System messages	TestF Reads	orReport	nactive mated / basecalled base	es 97.8 Mb / 101.18 Mb Active runs () Total runs 1			Experiment s	summary 🖍
\$	Host settings	Run co	ontrols	Start pore scan	Export run report \Xi					
		Position -	Flow cell ID -	Sample ID —	Health Available pores	Run time —	Run state —	Reads —	Estimated bases —	Basecalled
		MN21866	FAX17537	no_sample		21m 16s	Complete	82.93 k	97.8 Mb	101.18 Mb
			Clic take	k on your ru e you to the	un to see more deta e screen on the next	ails (will t slide)				

3. Check your run performance

4. Check the number of pores remaining

Check how many pores are remaining at the end of your run (and again after washing). Green pores are available to sequence.

5. Check the quality of your data

Check the proportion of reads that are passing quality checks (green line). The vast majority of reads should pass.

6. Check the length of your sequences

Check the average read length (N50)- for VP1 by DDNS this should be ~ 1.1 kB

7. Check your data has been demultiplexed

If barcoding was turned on, this chart will show the data assigned to each barcode

If your data has not been demultiplexed you can go to "Start", "Analysis" and "Barcoding" in MinKNOW to perform the demultiplexing.

5. Flow cell washing

Lecture and discussion

Washing a flow cell after a sequencing run

- Wash kit (WSH004) contains
 - Wash mix (DNAse I, WMX)
 - Wash diluent (enzyme buffer, DIL)
 - Storage buffer (S)
- DNAse I removes DNA that remains in the pores after the run ends
 - Avoids contaminating the next run

Protocol

- Combine 2ul of the DNAse enzyme (WMX) with 398ul of the wash buffer (DIL)
- Remove any air bubbles under the priming port
- Put the 400ul wash solution onto the flow cell through the priming port with the SpotOn port closed
- Incubate at room temperature for 60 minutes

Protocol

- For immediate use:
 - Flush the flow cell with Flush Buffer as described for flow cell priming
- For storage:
 - Add 500ul of the storage buffer (S) through the priming port, put the flow cell back into its packaging
 - Store in the fridge until the next use

6. Installation and use of piranha

Poliovirus investigation resource automating nanopore haplotype analysis

Lecture and discussion

piranha

Polio Sequencing Consortium

Áine O'Toole^{1,*} Rachel Colquhoun¹, Corey Ansley¹, Catherine Troman², Daniel Maloney¹, Zoe Vance¹, Joyce Akello², Erika Bujaki³, Manasi Majumdar³, Adnan Khurshid⁴, Yasir Arshad⁴, Muhammad Masroor Alam⁴, Javier Martin³, Alexander G Shaw², Nicholas C Grassly^{2,\$}, Andrew Rambaut^{1,\$}

Affiliations

- 1. Institute of Ecology & Evolution, University of Edinburgh, United Kingdom
- 2. Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom
- 3. Division of Virology, National Institute for Biological Standards and Control (NIBSC), Hertz, United Kingdom
- 4. Department of Virology, National Institute for Health, Islamabad, Pakistan

PIRANHA - overview

- Takes demultiplexed fastq files, maps to reference sequences, filters by length, and produces consensus sequences and reports as output
- Requires command line
- Installation instructions and basic usage available on github:

https://github.com/polio-nanopore/piranha

README.md	
piranha	
Poliovirus Investigation Resource Automating Nanopore Haplotype Analysis	
piranha is a tool in development as part of the Poliovirus Sequencing Consortium. It runs an automated analysis pipeline for sequencing VP1 regions of the poliovirus or non-polio enterovirus genome (whole genome analysis t	o be
mplemented soon) and produces an interactive report alongside the consensus data.	
Any issues or feedback about the analysis or report please flag to this repository.	

Background database: 959 VP1 sequences

PiranhaGUI

- Uses *Docker* to allow running of PIRANHA on different operating system (e.g. Windows, Linux) and to avoid using the command line!
- Available on github here:

https://github.com/polio-nanopore/piranha

• Requires same input as piranha and produces the same output

PiranhaGUI Installation

- Download from https://github.com/polio-nanopore/piranha/releases
- To install for windows, download: <u>PiranhaGUIv1.5.0_installer_windows.exe</u>
- Double click the downloaded file to install
- Open the PiranhaGUI when installed
- Click on the "Install Docker" button to go to the Docker website to download Docker
- Click on the "Install piranha" button to install piranha inside piranhaGUI.

Running PiranhaGUI

Barcodes and Samples

● ● ● AutoSave ● OFF ∩ 🗄 🗗 🎾 ∽ Ċ … 📄 barcodes ∽ 🔍 Q 🔗												
Hom	Home Insert Draw Page Layout Formulas >> Page Tell me											
A1	A1 $\stackrel{\bullet}{\checkmark}$ X \checkmark f_x barcode											
	А	В	С	D	E	F						
1	barcode	sample	date									
2	barcode01	MixedTest	2022-01-01									
3	barcode02	PureTest	2022-01-02									
4	barcode03	WTTest	2022-01-07									
5	barcode04	VDPVTest	2022-01-05									
6	barcode05	negative										
7	barcode06	positively										
8	barcode07	somemixed	2022-03-01									
9												
10												
11												
	barcodes +											
Re	Ready 🕅 Accessibility: Unavailable											

		Polio Sequencing Consortium
Favourites ♀ VirusEvoluti ▲ Applications □ Desktop	AutoSave OFF Save As: barcodes.csv Tags: Tags: Tags: Tags: Tags: Tags: Tags: Tags:	Q Search
 Downloads On My Mac Astronomy rambaut Pictures 	 barcodes.csv barcodes.xlsx demultiplexed > piranha_output > Common Formats 	
 Imaging Mpox Repositories Pandemic Coronavirus 	Online Locations File Format: Excel 97-2004 Workbook (.xl Online Locations File Format: CSV UTF-8 (Comma-delimite Web Page (.htm) Excel Template (.xltx) Excel 97-2004 Template (.xltx)	s) d) (.csv)
COVID-19	New Folder PDF Speciality Formats	

• • •

barcode,sample,date,well barcode01,MixedTest,2022-01-01,A01 barcode02,PureTest,2022-01-02,B01 barcode03,WTTest,2022-01-07,C01 barcode04,VDPVTest,2022-01-05,D05 barcode05,negative,,D06 barcode06,positively,,D07 barcode07,somemixed,2022-03-01,H12 Polio Sequencing Consortium

Polio Sequencing

Consortium

Wellcome Trust Award 206298/Z/17/Z

Workflow schema

A. Barcode analysis

B. Reference group analysis

C. Results reporting

Piranha report 2022-12-08

Example report

a. _____Sample 🔶 Barcode 🔺 Sample Classification 🌲 Reference group 🌲 Number of mutations 🌲

ENV001	barcode01	Sabin-like	Sabin3-related	1
ENV001	barcode01	Sabin-ilke	Sabin2-related	2
ENV002	barcode02	VDPV	Sabin2-related	12
ENV003	barcode03	WPV1	WPV1	NA
ENV004	barcode04	VDPV	Sabin2-related	10

b. Sample 🖕 Barcode 🔺 Sabin1-related 🖨 Sabin2-related 🏺 Sabin3-related 🏺 WPV1 🏶 WPV2 🏺 WPV3 🏶 NonPolicEV 🏶 unmapped 🏺

ENV001	barcode01	0	488	252	0	0	0	0	25
ENV002	barcode02	0	1100	0	0	1	0	35	12
ENV003	barcode03	0	0	0	339	0	0	0	0
ENV004	barcode04	0	0	0	138	0	0	0	0
negative	barcode05	0	0	0	0	0	0	1	10

Showing 5 of 96 entries

C. Identical Sequences Sequence IDs

identical Dequences	Cequeine ibs
1	ENV001 barcode01 Sabin2-related 2 161:CT;427:GA ENV030 barcode30 Sabin2-related 2 161:CT;427:GA
2	ENV022 barcode22 Sabin3-related 1 17:CT ENV024 barcode24 Sabin3-related 1 17:CT

d. Pass Sample Barcode Sabin1-related Sabin2-related Sabin3-related WPV1 WPV2 WPV3 NonPolioEV unmapped

~	negative	barcode05	0	0	0	0	0	0	1	10
	positive	barcode05	0	0	0	0	0	0	45	0

e.

ENV001 report 2022-12-08

a.	Sample	Barcode	Reference group
	ENV001	barcode01	Sabin3-related
	ENV001	barcode01	Sabin2-related

b. VP1 sequences

PIRANHA - output

• Outputs a summary report html, individual barcode reports, and consensus sequences as a fasta (both individual and in one file)

<		ŵ	Home	C	Documents	sero-spec	analysis_2022-09-12	•	Q	88	•	Ξ		×
Ę	Docum	ents			Name					▼ S	ze		Modified	Star
					🛑 barcode	_reports				9	items		12 Sep	☆
$\overline{\Gamma}$	Downlo	bads			🛑 publishe	ed_data				1	6 items		12 Sep	☆
IJ	Music				🐵 report.h	ıtml				3	5.9 kB		12 Sep	☆
*	Picture	es												
	Videos													
Ē	Rubbis	h Bin												
	sf_shai	red												
	sf_Sha	redFo	older 🔺)										
٢	VBox_0	GAs_(5.1 🔺)										
+	Other I	ocat	ions											

PIRANHA fasta output

⟨ ⟩ analysis_2022-	09-01 published_data	barcode26 👻	Q ः	🛛
D Recent	Name		▼ Size	Modified Star
() Recent	barcode26.consensus.	fasta	964 bytes	1 Sep 🛛 🛣
★ Starred				
습 Home				
🔲 Desktop				
Documents				
$\underline{\mathbb{G}}$ Downloads				
🎵 Music				
Pictures				
🖽 Videos				
💼 Rubbish Bin				

Things to look out for

- Spaces
 - Don't put spaces in folder names
- Special characters
 - Try to stick to using only '-' and '_' when naming samples, files, and directories: e.g., run_2023-07-26_barcodes.csv
- Capital letters
 - Some bioinformatics software is case sensitive so be careful when writing commands and file paths
- Dates: always use the ISO 8601 date format: 2023-07-26

7. Quality Control and Reporting

Lecture and discussion

Polio Sequencing Consortium

QC for NS of PV

- QC documents in progress: SOP_Metadata and QC v4.0.docx
- Feedback very welcome!
- Spreadsheet contains an example output file with QC data. This is built by PIRANHA using your barcodes.csv file.
- Word document explains the procedure in detail
- This QC routine is designed for routine direct testing of poliovirus from stool samples where the majority of samples will be negative. Other applications may require other QC thresholds (e.g. minimum pore numbers, run duration)

Run setup

	А	В	С	D	E	F	G	н	I.
1	sample	barcode	EPID	institute		Sabin1-related closest_refere	Sabin1-related num_reads	Sabin1-re	Sabin1-rel
2	sample01	barcode01	ARA-HIG-TOR-22-01				0		
3	sample02	barcode02	ARA-HIG-TOR-22-01			Poliovirus1-Sabin_AY184219	3556	1	99.89
4	sample03	barcode03	ARA-KAN-ERF-22-01			Poliovirus1-Sabin_AY184219	2243	1	99.89
5	sample04	barcode04	ARA-KAN-ERF-22-01			Poliovirus1-Sabin_AY184219	1453	0	100 :
6	sample05	barcode05	ARA-HIG-TOR-22-02			Poliovirus1-Sabin_AY184219	1278	0	100 :

(optional pre-run metadata in columns D,E, and can inset more)

- First columns are the barcode.csv file- more metadata can now be added to this file
- Aim to separate cases from the same region if possible- these viruses may be similar, making QC difficult.

RNA extraction and nested RT-PCR QC

- Failed RT-PCR or failed PCR reactions
 - Note these in the barcodes.csv (they need to be repeated on later runs)
- Positive control
 - Two per day of RNA extractions performed (first and last extractions)
 - Should yield a ~1,400 bp amplicon on a gel or tapestation
- Negative control
 - Two per day of RNA extractions performed (first and last extractions)
 - Should have no amplicon.

Flow cell check

- Should be > 400 pores available for routine direct testing from stool.
- Record flow cell ID- can be useful to identify contamination between runs.

Sequencing Run QC

- PIRANHA will add sequencing and QC data to the barcodes.csv and save the file as a report.
- Check run QC
 - Did Positive control have > 500 reads mapping to A20?
 - Does the Negative control have <50 reads mapping to PV or NPEVs?
 - Did the run continue to completion and with at least 400 pores available (excluding shifts between pore groups)

Sample QC

- If run passes, check samples where PV was detected. For VDPVs:
 - Samples with the same EPID (i.e. from the same case) should be no more than 2 nucleotides different from each other over VP1.
 - Samples adjacent to each other on the plate (on either axis) with different EPIDs should differ by >1 nucleotides over VP1.
 - Samples with <1000 reads should be >1 nucleotides different over VP1 from sequencing reads from previous runs that were generated using the same barcode and the same flow cell ID.

Sample retesting

- Try to avoid using the same layout if checking a group of samples.
- Flag as a QC-check on the new sequencing run.
- Annotate the original run depending on the result- can report the sample if it passes the repeat.
- Talk to the appropriate person to arrange the retesting

End